Цели управления страховой организацией

Страница 4

Если договоров несколько, то компанию интересует не отдельный договор и наступление случая в нем, а общее число случаев для всего портфеля и сумма всех выплат, т.е. коллективный риск по всему портфелю. Все страхователей внесут в виде премии по , в среднем следует ожидать страховых случаев, в каждом из которых придется выплатить возмещение, т.е. , или . Результат тот же. Рисковая премия не зависит от числа договоров в портфеле, но рассчитанная на основе рисковой премии нетто-премия зависит от . Соответственно, это отразится и на брутто-премии (где добавится влияние еще и третьих факторов).

Если размер выплаты фиксирован, то можно оперировать числом страховых случаев, т.е. имеет место биномиальный закон распределения, поэтому (при малой вероятности страхового случая в отдельном договоре) для однородного портфеля общее число случаев за срок действия договора подчиняется закону Пуассона. Отметим, что при определенных условиях оба распределения можно аппроксимировать нормальным законом. При распределенной величине ущерба, если портфель качественно однороден, т.е. не содержит резко выделяющихся наблюдений (договоров), то согласно закону больших чисел суммарный ущерб в портфеле подчиняется нормальному закону.

Данное обстоятельство объясняет причину широкого применения указанных распределений (а также тесно связанных с ними других законов) в актуарных расчетах. Например, если число случаев за единицу времени подчиняется распределению Пуассона, то длительность временного интервала между двумя очередными случаями подчиняется экспоненциальному распределению.

Вначале для упрощения будем считать, что размер выплат фиксирован. Тогда общий убыток страховщика пропорционален числу страховых случаев. Если объем однородного портфеля велик, а вероятность страхового случая в одном договоре мала, то применима пуассоновская аппроксимация. Наибольшее значение плотности в точке (интенсивность потока заявок или математическое ожидание количества заявок - исков о возмещении понесенного ущерба). Как было показано ранее, если страховая сумма, выплачиваемая при наступлении страхового случая, во всех договорах постоянна и равна , а единовременная страховая премия, вносимая клиентом для обеспечения эквивалентности риска, равна , то из равенства собранной суммы взносов и общей суммы выплат следует: . Результат совпал с полученным ранее, как и должно быть.

Однако нетрудно заметить, что собранная сумма взносов (рисковых премий) обеспечивает выплату компенсаций только при благоприятной для страховщика ситуации, когда фактическое число случаев не превосходит его математического ожидания: , т.е. при таких условиях помощь может быть оказана только первым клиентам. При меньшем количестве случаев компания сохраняет часть невостребованных средств. Но нельзя обращать эту сумму в прибыль, она должна быть направлена в страховой фонд (резерв) на случай превышения фактического числа выплат над ожидаемым в следующем году.

Страницы: 1 2 3 4 5

Другое по теме:

Анализ эффективности введения глобальной системы денежных переводов «Western Union»
C января 2008 года по декабрь 2010 года в АКБ «Алмазэргиэнбанк» ОАО денежные переводы осуществлялись через глобальную систему «Money Gram». Исходя из данных за 2008–2010 гг., прослеживается тенденция к уменьшению объема денежных переводов. По сравнению с объемом в 2008 году, объемы 2009 и 2010 годо ...

Мониторинг банковского риска
Мониторинг риска — это процесс регулярного анализа показателей риска применительно к его видам и принятия решений, направленных на минимизацию риска при сохранении необходимого уровня прибыльности. Процесс мониторинга риска включает в себя: распределение обязанностей по мониторингу риска, определен ...

Расчеты платежными поручениями
Платежными поручениями является распоряжение владельца счета (плательщика) обслуживающему его банку, оформленное расчетным документом, перевести определенную денежную сумму на счет получателя средств, открытый в этом или другом банке. Платежное поручение исполняется банком в срок, предусмотренный з ...

Главное меню

Copyright © 2025 - All Rights Reserved - www.bankpartition.ru